Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38677281

RESUMO

Plants rely on autophagy and membrane trafficking to tolerate stress, combat infections, and maintain cellular homeostasis. However, the molecular interplay between autophagy and membrane trafficking is poorly understood. Using an AI-assisted approach, we identified Rab3GAP-like (Rab3GAPL) as a key membrane trafficking node that controls plant autophagy negatively. Rab3GAPL suppresses autophagy by binding to ATG8, the core autophagy adaptor, and deactivating Rab8a, a small GTPase essential for autophagosome formation and defense-related secretion. Rab3GAPL reduces autophagic flux in three model plant species, suggesting that its negative regulatory role in autophagy is conserved in land plants. Beyond autophagy regulation, Rab3GAPL modulates focal immunity against the oomycete pathogen Phytophthora infestans by preventing defense-related secretion. Altogether, our results suggest that Rab3GAPL acts as a molecular rheostat to coordinate autophagic flux and defense-related secretion by restraining Rab8a-mediated trafficking. This unprecedented interplay between a RabGAP-Rab pair and ATG8 sheds new light on the intricate membrane transport mechanisms underlying plant autophagy and immunity.

2.
Mol Plant Microbe Interact ; 37(3): 220-226, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37999635

RESUMO

Filamentous plant pathogens, including fungi and oomycetes, cause some of the most devastating plant diseases. These organisms serve as ideal models for understanding the intricate molecular interplay between plants and the invading pathogens. Filamentous pathogens secrete effector proteins via haustoria, specialized structures for infection and nutrient uptake, to suppress the plant immune response and to reprogram plant metabolism. Recent advances in cell biology have provided crucial insights into the biogenesis of the extrahaustorial membrane and the redirection of host endomembrane trafficking toward this interface. Functional studies have shown that an increasing number of oomycete effectors accumulate at the perihaustorial interface to subvert plant focal immune responses, with a particular convergence on targets involved in host endomembrane trafficking. In this review, we summarize the diverse mechanisms of perihaustorial effectors from oomycetes and pinpoint pressing questions regarding their role in manipulating host defense and metabolism at the haustorial interface. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Interações Hospedeiro-Patógeno , Oomicetos , Oomicetos/metabolismo , Plantas/microbiologia , Proteínas/metabolismo , Fungos , Doenças das Plantas/microbiologia
3.
Annu Rev Phytopathol ; 61: 325-350, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37186899

RESUMO

Membrane trafficking pathways play a prominent role in plant immunity. The endomembrane transport system coordinates membrane-bound cellular organelles to ensure that immunological components are utilized effectively during pathogen resistance. Adapted pathogens and pests have evolved to interfere with aspects of membrane transport systems to subvert plant immunity. To do this, they secrete virulence factors known as effectors, many of which converge on host membrane trafficking routes. The emerging paradigm is that effectors redundantly target every step of membrane trafficking from vesicle budding to trafficking and membrane fusion. In this review, we focus on the mechanisms adopted by plant pathogens to reprogram host plant vesicle trafficking, providing examples of effector-targeted transport pathways and highlighting key questions for the field to answer moving forward.


Assuntos
Vesícula , Fusão de Membrana , Membranas , Membrana Celular , Transporte Biológico
4.
Curr Opin Plant Biol ; 74: 102372, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37172365

RESUMO

Nucleotide-binding leucine-rich repeat (NLR) proteins are intracellular immune receptors that restrict plant invasion by pathogens. Most NLRs operate in intricate networks to detect pathogen effectors in a robust and efficient manner. NLRs are not static sensors; rather, they exhibit remarkable mobility and structural plasticity during the innate immune response. Inactive NLRs localize to diverse subcellular compartments where they are poised to sense pathogen effectors. During pathogen attack, some NLRs relocate toward the plant-pathogen interface, possibly to ensure their timely activation. Activated NLRs reorganize into wheel-shaped oligomers, some of which then form plasma membrane pores that promote calcium influx and programmed cell death. The emerging paradigm is that this variable and dynamic nature underpins effective NLR-mediated immunity.


Assuntos
Resistência à Doença , Plantas , Plantas/metabolismo , Proteínas NLR/genética , Imunidade Vegetal , Doenças das Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Sci Adv ; 9(18): eadg3861, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37134163

RESUMO

Parasites counteract host immunity by suppressing helper nucleotide binding and leucine-rich repeat (NLR) proteins that function as central nodes in immune receptor networks. Understanding the mechanisms of immunosuppression can lead to strategies for bioengineering disease resistance. Here, we show that a cyst nematode virulence effector binds and inhibits oligomerization of the helper NLR protein NRC2 by physically preventing intramolecular rearrangements required for activation. An amino acid polymorphism at the binding interface between NRC2 and the inhibitor is sufficient for this helper NLR to evade immune suppression, thereby restoring the activity of multiple disease resistance genes. This points to a potential strategy for resurrecting disease resistance in crop genomes.


Assuntos
Resistência à Doença , Proteínas de Plantas , Humanos , Proteínas de Plantas/metabolismo , Resistência à Doença/genética , Imunidade Vegetal/genética , Proteínas NLR/genética , Proteínas NLR/metabolismo , Bioengenharia
6.
EMBO J ; 42(5): e111519, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36579501

RESUMO

Nucleotide-binding domain leucine-rich repeat (NLR) immune receptors are important components of plant and metazoan innate immunity that can function as individual units or as pairs or networks. Upon activation, NLRs form multiprotein complexes termed resistosomes or inflammasomes. Although metazoan paired NLRs, such as NAIP/NLRC4, form hetero-complexes upon activation, the molecular mechanisms underpinning activation of plant paired NLRs, especially whether they associate in resistosome hetero-complexes, is unknown. In asterid plant species, the NLR required for cell death (NRC) immune receptor network is composed of multiple resistance protein sensors and downstream helpers that confer immunity against diverse plant pathogens. Here, we show that pathogen effector-activation of the NLR proteins Rx (confers virus resistance), and Bs2 (confers bacterial resistance) leads to oligomerization of their helper NLR, NRC2. Activated Rx does not oligomerize or enter into a stable complex with the NRC2 oligomer and remains cytoplasmic. In contrast, activated NRC2 oligomers accumulate in membrane-associated puncta. We propose an activation-and-release model for NLRs in the NRC immune receptor network. This points to a distinct activation model compared with mammalian paired NLRs.


Assuntos
Proteínas NLR , Imunidade Vegetal , Animais , Proteínas NLR/química , Proteínas NLR/metabolismo , Plantas/metabolismo , Imunidade Inata , Inflamassomos , Proteínas de Plantas/genética , Doenças das Plantas , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...